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ABSTRACT 

It is shown that the one electron Dirac operator in a stationary electric field is 
essentially self-adjoint, on the domain of infinitely differentiable functions of 
compact support, for a class of spherically symmetric potentials including the 
Coulomb potential, for atomic numbers less than or equal to 118. In addition, 
the domain of the closure of the perturbed operator is the same as the domain 
of the closure of the unperturbed operator. We also give an abstract theorem 
on domain-preserving essential self-adjointness for perturbed operators, which 
is perhaps of independent interest. 

1. Introduction 

It  is known  (Rellich 1-20], W e i d m a n n  [ 2 5 ] ) t h a t  for  e in the  open interval  

( -  x/3/2, ~/3/2) the Di rac  ope ra to r  

(1.1) /:/(e) = i- let- grad + ~ + e V  with ~3(/:/(e)) = (~~ 

is essentially self-adjoint with ~)(~(e)) = ~3(/:/(0)) = W21'4(~3), in the case of 

the Coulomb potential V(r) = - l / r .  In this paper we show that for e in the 

interval (-x/3/2,x/3/2) ,  domain-preserving essential self-adjointedness remains 

true for a class of spherically symmetric potentials including the Coulomb po- 

tential. Note that e is the adjusted atomic number defined by e = a N ,  where 

N is the atomic number and a is the fine structure constant, a = e2(hc)  - t ~_ 

(137.037) -1 . Hence the restriction 0 < e < x/3/2 corresponds to N < 118, and 

t This work was initiated while both authors were guests of the Institute for Theoretical 
Physics, University of Geneva, Switzerland. 
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(1.1) is the Dirac operator corresponding to an ion with one electron and 

atomic number N.  

In Section 2 we define the operator of (1.1) in more detail. Theorem 2.1, which 

is our main theorem, says that if the potential V is spherically symmetric and 

dominated by the Coulomb potential, then for e in the interval ( -x /3 /2 ,  x/3/2) 

the Dirac operator /:/(e) is essentially self-adjoint with ~(/:/(e)) = Wz~'4(~3) �9 

Our potential V need not possess any particular smoothness properties. In Sec- 

tion 3, we obtain an abstract theorem of Rellich-Kato type which gives necessary 

and sufficient conditions for preservation of (domain-preserving) essential self- 

adjointness under perturbations which are relatively bounded but with relative 

bound of arbitrary size. This Theorem 3.1 is perhaps of independent interest; 

hence in Section 3 we also observe some connections between this theorem and 

other perturbation criteria. In Section 4, we prove Theorem 2.1. This proof uses 

the fact that each one electron Dirac operator admits a complete family of re- 

ducing subspaces; since the orthogonal sum of essentially self-adjoint operators 

is essentially self-adjoint, it suffices to show that the part of/:/(e) in each of these 

subspaces is essentially self-adjoint. We show the latter by applying Theorem 3.1 

to each of these parts. Roughly, the use of this theorem permits one to remove 

relatively compact parts of the perturbing operator; the key assumption of this 

theorem is the invertibility of an associated operator. We establish this inverti- 

bility with the aid of an estimate formulated elsewhere [19] combined with a result 

on invertibility of  matrix operators (see Halmos [9, Problem 56]). 

Let us make some brief additional comments on the history of this problem. 

By using the von Neumann and Weyl theories, it can be seen that (1.1)possesses 

a self-adjoint extension for all real values of e and a large class of real potentials 

V; for example, see L. Maurin [13]. In particular, this can be seen by showing 

that H(e) commutes with a conjugation. On the other hand, as concerns the es- 

sential self-adjointness which is desired if/it(e) is to be a complete operator from 

the standpoint of quantum mechanics (restricting our attention for the moment 

to the Coulomb potential V ( r )  = 1/r) ,  Case [4] observed that an additional 

boundary condition is needed for N > 137; later, Brownell [2] showed speci- 

fically that essential self-adjointness fails for e in (1, oo). Meanwhile, Kato [12] 

(see also [11]) observed that one obtains (domain-preserving) essential self- 

adjointness for e in [0, �89 Rellich [20] and Weidmann [25] extended essential 

self-adjointness to e in [0, x/3/2]; Weidmann [25] also showed absolute con- 
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tinuity of the essential spectrum of ~ (e ) .A limitation to values of N near 118 is 

in accordance with an earlier observation by Kato [12, p. 206] concerning domain 

changes for operators when represented in momentum space. 

Prosser [17] showed essential self-adjointness for all e in the case of potentials 

V in ~P, p > 3, and Gross [6] showed that ~3oc is sufficient. Recently, Evans 

[5] extended Kato's result to V of the form V(r) = Vo(r) + 1/r, with e in [0, �89 

and Vo in the class of functions (see Stummel [24]) where f V2(y) [ x - y I -(1 +~)dy, 

t x -  y I < 1, is locally bounded for some fixed 0 < ~ < 1. It was also shown 

in [5] by a constructive method that the Green's matrix exists for (1.1), for 

the Coulomb potential and for e in [x/3/2); although not explicitly stated there, 

the essential self-adjointness for e in [0,x/3-/2 ) follows from [5, Theorem 2] 
and essential self-adjointness extends to the potentials V = Vo + 1/r mentioned 

above for e in [0, x/3/2) in the same manner as was done for the smaller interval 

in [5]. Jorgens [10] has very recently obtained similar general results for matrix 

valued potentials V = AI + A2 + A3, with I Al(x)[ in ~/aoc(~3),lAz(x)J in the 

Stummel class mentioned above, and Aa(x) the sum of Coulomb potentials 

l x-xkl-    with Bk constant matrices such that either < o r  such that 

Bk = ekl with < here [A(x) I denotes the maximum of the absolute 

values of A(x) .  Jorgens [10] also contains nonlocal versions. We also mention 

the work of Schillemeit [22] and the paper [1] for a group-theoretic approach 

to this problem.t 

2. The Dirac operator and the essential self-adjointness theorem 

The operator /:/(e) in (1.1) acts on vectors u(x) = (ul(x) . . . .  ,u4(x)) with four 

components, where x is the space variable x = (xl ,  x2, x3). Thus the basic Hilbert 
space is .~ = @ 4 2 3 n = 1 ~n ( ~ ) ,  with inner product (u, v) = • 4 n = 1 (un, Vn)n ; we 
shall use the notation .~ = [-oZ(~3)] 4, e.g., see [-10, 12]. The ~ in (1.1) has three 

components ~ -- (~1, ~2, z3) with each component ~k a 4 x 4 matrix; similarly, 

/~ is a 4 x 4 matrix, and these Dirac matrices ~k and/~ satisfy the commutation 

relations [~k, ~l] = 2tSkt, here letting ~4 = fl for convenience. The potential V 

in (1.1) represents the operator of multiplication of each component of u by a 

real function V = V(x) .  Thus t:I(e)u = v ~ has first component 

3 4. ~ . . t ' . . ' L  4 

(2.1) vl(x) = i -1 ]E E ( a k ) , h ~ )  + E (fl)lhUh(X) + eV(x)ul (x) ,  
k = l  h = l  h = l  

t Added in proof." We have just learned about the paper of Schmincke [23]. 



66 K.E. GUSTAFSON AND P. A. REJTO Israel J. Math., 

the other three components being similar. We refer the reader to [11, 2, 5, 19, 14] 

for further details. 

It is known (e.g., see [-5, 14]) that the Dirac operator for the Coulomb potential 

can be treated by separation of variables. Let V be spherically symmetric and 

dominated by the Coulomb potential; that is, we assume that V is of the form 

(2.2) V(x) = p([ xl)  

for some real valued function p defined on (0, m) such that 

(23) p(Ixl) txl 0, 
Then l:I(e) is, by separation of variables, unitarily equivalent to a system of 2 x 2 

matrix ordinary differential operators (see Section 4) on a complete family of 

reducing (in the sense of [11, pp. 171-172]) subspaces for/:/(e),  so that it suffices 

to demonstrate essential self-adjointness for the part/:/(e) in each reducing sub- 

space. As will be seen in Section 4, the estimates used to do the latter depend 

only on the growth rate of the potential and hence we do not assume any smooth- 

ness or special properties in (2.3). 

We describe a specific domain of essential self-adjointness as follows. Let 

Tn, n = 1,...,4, be the operator taking 1~2(~ 3) onto (~2(6a2), E,2(0, oo)) that 

introduces spherical coordinates, that is, (Tnf) (r, 0, ~b) = rf(xl(r,  O, qb), x2(r , O, ~b), 
x3(r, 0, tk)), where S# 2 denotes the two-dimensional unit sphere, and let T be the 

operator on [~2(~3)]4 given by applying Tn on each component. Then/:/(e) is 

unitarily equivalent to TIZI(e)T -~ and ~(TI:I(e)T -1) = [t~(S~'2),ff~~ (0, ~ ) ] 4  

if the domain of/:/(e) is taken to be 

(2.4) ~) = T-'{[r176176 f~~ m)]4}.  

The proof of the following main theorem will be given in Section 4, based on 

Theorem 3.1 of the next section. 

THEOREM 2.1. Let the operator I:I(e) be defined as in (1.1) with ~3(/:/(e)) - ~3 

as in (2.4) and with a potential V that is spherically symmetric and dominated 

by the Coulomb potential as in (2.2) and (2.3). Then IZI(e) is essentially self- 

adjoint for  e in ( -~/3/2,  x/3/2), and ~)(/:/(e)) = ~3(~-0-)) = W]'4(~3). 

Qo 3 4 We remark that since ~3 c [t~ o ( R ) ]  , essential self-adjointedness willhold on 

the latter domain also. 
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3. An abstract theorem on essential seif-adjointness 

As is well-known (e.g., see Kato [11, p. 272]), a symmetric operator Tis essen- 

tially self-adjoint if and only if the ranges 9~(T- p• are dense, for some/~• 

with Im#+ > 0, and some p_ with Imp_ < 0. Rellich and Kato formulated 

criteria on a perturbation which ensured that the perturbed and unperturbed 

operators are essentially self-adjoint on the same domain. Specifically, the Rellich- 

Kato Theorem (e.g., see [11, p. 288]) states that if Ao is essentially self-adjoint, 

V is symmetric with ~3(V)~ ~3(Ao), and V is Ao-bounded with relative bound 

strictly less than 1, i.e., there exist constants a and b, b < 1, such that 

(3.1) II vxli allxll + bllAox[I, x~(Ao)' 
then Ao + V is essentially self-adjoint and 

(3.2) ~1 o + V = Ao + ~" and ~(A o + V) = ~3(-(o). 

In this section, we replace the sufficient condition of relative bound less than 1 

by another condition, formulated in terms of the Fredholm index of associated 

operators, which is necessary and sufficient in the class of perturbations V which 

are Ao-bounded, i.e., V for which there exists some constant c such that 

(3.3) [[Vxil < c[iixli + t[AoxH], x ~ ( A o ) .  

This extended version of the Rellich-Kato Theorem is useful, for example, as 

in Section 4 of this paper, when treating perturbations V which are perhaps 

not small perturbations. The Fredholm terminology, although not essential, 

conveniently isolates the principal requirements on V relative to Ao. 

Concerning the condition (3.3), let us recall some elementary facts in the fol- 

lowing lemma. 

LEMMA 3.1. Let ~(V) = ~(Ao), where V and A o are both closeable operators 

in a Banach space ~ .  Then equivalently: 

(i) V is Ao-bounded, i.e., (3.3) holds, 

(ii) V is Ao-bounded, 

(iii) V(# - Ao)- 1 is bounded, for every # in the resolvent set of Ao, 

(iv) ~ ' ( p -  ,,~o)-le~ (30, for every p in the resolvent set of Ao, 

(v) + r  = 

(vi) ~3(V) = ~3(Ao). 

For such V and A,  one always has Ao + V = Ao + ~" if Ao + V is closeable, 

with equality if and only if Ao + 1/ is closed. 
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The verification of Lemma 3.1 follows from the closed graph theorem and 

elementary manipulations, e.g., as in I l l ,  p. 288]. We recall that for non-closed 

Ao, the resolvent set is defined to be those tt for which ( # - A o ) - 1  is bounded 

and densely defined; for the equivalences (iii) and (iv) we tacitly assume that 

the resolvent sets there are not empty. We would like to mention, even though 

it is obvious, that the condition (vi), that is, 

(3.4) ~3(17) = ~(,4o) 

which is equivalent to relative boundedness, is often easy to check in specific 

applications, and, for example, is immediate when it is known that ~(V)  = ~)(Xo). 

This, then, is the restriction on the class of potentials that can be considered in 

Theorem 3.1 below. 

Since our viewpoint is Fredholm theory, we recall that a densely defined oper- 

ator in a Banach space ~ is said to be Fredh'olm if T is closed, 9~(T) is closed, 

and both c~(T) and ~(T) are finite, where ~(T) = dim gt(T) and p(T) = dim 3~/~tl(T); 

T is Fredholm of index zero if in addition the index i ( T ) =  0, where 

i(T) = ~(T) - ~(T).  

THEOREM 3.1. Let A o be essentially self-adjoint, V symmetric with 

~(V)  ~ ~(Ao),  where V is Ao-bounded. For each p in the resolvent set of A o 

define the operator T u ~93(~) by 

T~ = I - V(# - Ao)-x 

Then A o + V is essentially self-adjoint, A o + V = Ao + V, and ~ ( A  o +  V) 

= ~(Ao),  if and only i f  there exist #+ in the closed upper half-plane and IX_ 

in the closed lower half  plane such that the operators T~+ and T~_ are Fredholm 

of index zero. 

PROOF. Using the identity 

- Ao - ~ = [I - V(~ - Ao)-1] (# _ A-o) ' (3.5) 

and since # - A- o is Fredholm of index zero for all p in the resolvent set of A~, 

the sufficiency follows from the well-known fact (e.g., Schechter [21, Theorem 

VII.1.3]) that the composition of two Fredholm operations A1 and A2 is Fred- 

holm and the index of the composition is the sum of the indices of the two opera- 

tors, that is, i(A1A2) = i(A1) + i(A2). Thus, for complex/~+ and # _ ,  the defect 

indices /~(tt+ - -'~o - I7) =/~(#_ + A- o - ~7) = 0 and -~o + 17 is self-adjoint, 

whereas for real # = #+ = #_ ,  one has an operator # - A- o - 17 which is sym- 
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metric and onto, hence self-adjoint, so that -4o + /y  is self-adjoint. The necessity 

follows for example from the fact (see Schechter [21, Theorem VII. 2.5]) that 

if the composition A1A 2 is Fredholm, where A2 is Fredholm and A1 is closed, 

then A1 is Fredholm, so that by the index formula mentioned above applied 

to (3.5), we have T• is Fredholm of index zero. 

In Section 4, we will use Theorem 3.1 in the following form, there taking 

/1+ = p _  = 0 .  

COROLLARY 3.1 [19, Theorem 3.1] I f  there exist #+ and #_ as in Theorem 3.l 

such that Tu+_ = B+_ + C• where B+_ are invertible in the sense B~= 1 E ~ ( ~ ) ,  and 

C• are compact, then A o + V is essentially self-adjoint and 7~(A o + V) = ~(A-o). 

Corollary 3.1 follows from the fact that an invertible operator is Fredholm 

of index zero and that this property is stable under compact perturbations, (e. g., 

see [11, Theorem IV.5.17], [21, Theorem VII.2.1]). 

For /~ nonreal, T~ is already 1-1, since T~u = O, u ~ O, would imply that 

(Vv, v) = p ]l v [I 2 - ( A o  v, v) for v = ( p -  Ao)- lu ,  requiring that # be real by 

the symmetry of A- o and 17. If #+ =/~_ = # real, then fl(T~) = 0 implies that 

the symmetric operator # - - 4 o -  17 has a dense range. Therefore one can 

state Theorem 3.1 in terms of the following weaker (but equivalent) hypothesis, 

showing that Theorem 3.1 has the effect of shifting the necessary and sufficient 

conditions for essential self-adjointness, mentioned at the beginning of this sec- 

tion, from the unbounded operators # - A o - V to the bounded operators T~• 

COROLLARY 3.2. With Ao, V, and T~ as in Theorem 3.1, A o + V is essentially 

self-adjoint and 7~(Ao + V) = ~(A-o) if and only if there exist #+ as in Theo- 

rem 3.1 such that fl(T~• = O. 

Theorem 3.1 includes the Rellich-Kato Theorem. As in Kato [-11, p. 288], 

noting that with I~• = + ic', c' = a' /b' ,  with a '  and b' as in [11], one has 

I1 [I < 1; hence the Tu• are invertible, and therefore Fredholm of 

index zero. Similarly, one can check that the following modification of Theorem 

3.1 includes the sufficient condition of relative bound b' = 1, e.g., see [11, p. 

289-290]. To illustrate the difference between the conclusions, we remove the 

hypothesis of Theorem 3.1 that V be Ao-bounded. 

COROLLARY 3.3. Let A o be essentially self-adjoint, V symmetric with 

~)(V) ~ ~3(Ao), and define T. = I - V(# - Ao) -1 for # in the resolvent set of 

Ao. Then Ao + V is essentially self-adjoint if  and only if there exist #• in the 

open upper and lower half-planes such that the ranges ~R(T.• are dense. 
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PROOF. Both the necessity and sufficiency follow from (3.5) written with Ao 

and V in place of ,4o and 17, the necessity with #• = + i, the sufficiency with 

the postulated #• 

Theorem 3.1 has some connections with other perturbation criteria for essential 

self-adjointness and contraction semigroups obtained by "doubling" or other 

continuity arguments (e.g., see [3, 7, 8, 16]). Without further elaboration, 

we illustrate this point by extending the result of Okazawa [16, Corollary], 

namely, that if A is self-adjoint, V symmetric, ~3(V) D ~3(A), and Re(Au, Vu) > 0 

for all u e ~3(A), then A + V is self-adjoint. 

COROLLARY 3.4. Let A o be essentially self-adjoint, V symmetric with 

~3(V) D ~3(Ao) , and V Ao-bounded. Then A o + V is essentially seIf-adjoint 

and A o + V = Ao + ~ if the set of values (Aou, Vu), for all u ~ ( A o ) ,  is con- 

tained in some closed half-plane not containing ( -  0% 0]. 

PROOF. Defining T u as in Theorem 3.1 or Corollary 3.3, we first observe that 

since Tv is bounded and densely defined, the numerical ranges W(T~) and W(T*v) 

are conjugates of each other; recall that for a closeable operator T, one has 

W(•) = W(T) by the joint continuity of  the inner product. Hence if 0 6 W(T~• 

for some acceptable p• in the open upper and lower half-planes, Tu• and T'u• 

will all have bounded inverses (hence dense ranges) so that A o + V will be essen- 

tially self-adjoint by Corollary 3.3 and A o + V = -4o + ~ by Theorem 3.1. 

Forl]  x II -- 1,  x = Ao)y, 121 = 1, we have 

(3.6) (2T~x, x) = 2 - 2p(Vy, y) + 2(Vy, Aoy). 

Now choose 2 = e i~ 101 < such that 2(Vy, Aoy) is rotated to have a 

nonnegative real part, and then let #• = _ iS. Then 

(3.7) Re(2 Tu+_x,x) = R e 2 -  Re{il;~12(Vy, y)} + Re{2(Vy, Aoy)} 

> R e 2 ,  

so that the numerical ranges W(T~• exclude zero. 

We mention that the half-plane condition on (Aou, Vu) on ~(Ao) is equivalent 

to the same condition (-4oU, 17u) by the continuity of the inner product and the 

Ao-boundedness of  V. 

4. Application to the Dirac operator 

By assumption (2.2), the potential V is spherically symmetric. This implies 

that the operator TI-'l(e)T -a, defined in Section 2, admits a complete family of 
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reducing subspaces and on each of them it is unitarily equivalent to a matrix 

differential operator 

(4.1) L(e)(x) = 

[ - d  x~'~ 
~, ( I -  ep(r l--d-( + ~}] 

t (d~ + ~) - (1  + ep(,))j 

~3[L(e) (K)] = [~~ ~)]2 

to= + l ,  ___2, ___3 . . . . .  

This is known for the Coulomb potential (see [18],[14]) and follows for the V 

considered here as in [18], with straightforward adjustments. Since TI:I(e)T -~ 

is unitarily equivalent to/~(e),  and since the orthogonal sum of essentially self- 

adjoint operators is essentially self-adjoint, the main Theorem 2.1 is implied by 

the following theorem. 

THEOREM 4.1. Let tc be f ixed and let e be in (-x/3/2, x/3/2). Then the operator 

L(e)(x) is essentially self-adjoint in [~2(0, oo)]2. 

PROOF. For each ~: we apply the Corollary 3.1 version of Theorem 3.1, with 

(4.2) A o = L(O)(x), V = M(p) ,  p+ = p_ = O, 

where Vis the operator given by multiplication of each of the two components 

by the function p. The Ao-boundedness of V follows from assumption (2.3) 

and from a well-known Sobolev estimate (e.g., see [11, p. 307] or [19, Lemma 3.2]). 

In the lemma that follows we show that the other assumptions of Corollary 

3.1 also hold. We first recall (e.g., see Prosser [17]) that/:/(0) is essentially self- 

adjoint on ~3 and hence each L(O)(x) is essentially self-adjoint on its domain, 

and also that # = 0 is in the resolvent set of/~(0) and hence in the resolvent set 

of L(0)0c), so that we may take #+ = #_ = 0. In order to maintain the con- 

nection between our notation here and that of [19] so that we may use some 

estimates from the latter, we also designate the operator Ao 1 by 

Ao 1 = Ro(~)(0).  

[EMMA 4.1. For each fixed x,  for the operator Ro(x)(0 ) there is a fami ly  

of operators {A6Qc)} such that for  each positive c~ 

(4.3) M(p)Ro(~c)(O ) - A~(x) =- C~ is compact. 
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Moreover for each number e in the open interval ( - ~/3/2, x/3/2) the number 6 

can be chosen so that 

(4.4) (I - eA~(tQ) -1 e ~{[s 00)]2}. 

In other words, in terms of Theorem 3.1 and Corollary 3.1, letting 

To= T~: = I -  VA o l ,  Bo = I - e A  o, and C o =  Co, 

we have 

T O = B o + Co 

with Bo and Co as required in Corollary 3.1. 

The proof of Lemma 4.1 is based on the following (4.5) known representation 

of the kernel Ro(x ) (0)(4, t/) of the operator Ro(/0(0 ) (e.g., see [19, Lemma 3.1] 

or [5]). For brevity we consider only the case of positive values of x, the case 

for negative x being similar. One has 

Ro(~ )(O)(~,q)  = t F(~' 
q), < 4, 

~F*(~,,1), ~ < ~, 
(4.5) 

where 

(4.6) F(~,q) = ~- (~q)~ 

and where 

I l l (t)  �9 

�9 (t) . [- tH,~(~)Or , 

(4.7) 

-iH~:t),,)(ir ) 

-H(~:?r)(i~)J,2,,,(iq) J 

al(~: ) = x +-12 and a2(x) = x -  1. 

Here, of course, J and H are the Bessel and Hankel functions in the usual no- 

tations. 

To verify conclusion (4.3), we define the kernel of  the operator A~(~r to be 

the singular part of the kernel of M(p)Ro(x)(0) near the origin. Specifically, let 

c~ denote the characteristic function of the interval [0, &] and set 

(4.8) A~(/c)(r t/) = c~(r I G(tr 
(r //), t/ < 4, 

~*(~) (4 ,  ~/), ~ < ,/, 

where 

(4.9) G(~) (~, ~) = - ~ (~, ~)* 
0 (1) p(~)H~,(~) ( i~)J~2t~)(iq)" 

Lo o j 
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For the case of the Coulomb potential, that is, for p(~) = l / l ,  conclusion (4.3) 

was verified elsewhere [19, conclusion (3.4) of Theorem 3.2]. Those arguments 

involved only the absolute value of the kernel of the operator in (4.3). Assumption 

(2.3) shows that the absolute value of this kernel is majorized by the absolute 

value of the kernel corresponding to the Coulomb potential. Clearly if the ab- 

solute value of the kernel of an integral-operator admits a majorant kernel 

such that the corresponding operator is compact, then so is the original operator. 

These facts together establish the validity of conclusion (4.3) under the present 

assumption (2.3). 

To establish conclusion (4.4), let the projectors P1 and P2 acting on 

[~2(0, c~)] 2 be defined by 

P I [ ; : ]  = [ ~ 1  and P z [ f x z ] =  [ f z ] .  

Then it follows from definitions (4.8) and (4.9) that 

(4.10) P1Ao(K)P1 = PzA~(K)P2 = O. 

According to an estimate formulated elsewhere [19, estimates (3.56)12 and 

(3.56)21] , to each ~c and positive number e there is a strictly positive number 6 

such that 

(4.11) [IP1A ( )pzl I < 1 + e 1 + e ~1(---- ~ and IIe2A ( )P11[ 
This was stated for in [9] the case of the Coulomb potential, but assumption (2.3) 

allows us to conclude it for our present class of potentials. Inserting definition 

(4.7) in these estimates, we obtain 

(1 + e) 2 
(4.12) [] P1AaQc)P2 []'[] P2A~Qc)Pt [[ < ~2 -- 1/4' 

if we remember that according to definition (4.7) 

0q(~)~2(~) = ~2 _ 1/4, ~: = 1, 2, .... 

Hence 

(4.13) e2(1 Jr" e )  2 < K 2 - -  1/4 

implies 

(4.14) e 2 ][ PIA~(r)P2A~(~)Pt ][ < 1. 

Thus for e in ( -  ~/3/2, x/3/2) we can choose e in (4.13) and a corresponding 
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in (4.11) so that  (4.14) holds. The relations (4.14) and (4.10) are sufficient to 

imply the conclusion (4.4); e.g., apply [-9, Problem 56] to the operator  

I - eP 1A~(x)P21 

[ - e P 2 A ~ ( x ) P  1 I J .  

We note that in this way we have also extended the interval size beyond that  

considered in [19].  Roughly  speaking, we have used the spectral radius o f  eA~(x) 

rather than its numerical radius to determine the invertibility o f  I -  eA~(x). 

This is in accordance with the well-known fact that  the numerical radius majorizes 

the spectral radius (e.g. see [-9, Problem 173]). 

This completes the p roo f  o f  Lemma 4.1, hence o f  Theorem 4.1, and hence 

o f  Theorem 2.1. 
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